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III. CONCLUSION

We have presented the characteristic impedance of the slab line

with an anisotropic dielectric. The characteristic impedance has

been obtained analytically by using transform methods. A sim-

pler approximate formula which is useful for application has also

been presented.
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Edge-Guided Magnetostatic Mode in a

Ridged-Type Waveguide

MORIYASU MIYAZAKI, KEN’ICHIRO YASHIRO, MEMBER,IEEE,
AND SUMIO OHKAWA, SENIORMEMBER,IEEE

Mmtract —A ridged-type magnetostatic wavegstide is analyzed using the

boundary element method. A bias magnetic field is applied perpendicularly

to the surface of an yttrium-iron-garnet (YIG) film growu on a gadlinium-

gallium-gamet (GGG) substrate. The dispersion curves and the potentiaf

profiles obtained in this paper show that the mode has a strong nonrecipro-

cal property and is a kind of edge-guided mode which propagates along

either side of the ridge, depending upon the direction of the hiss field and

the direction of the wave propagation. In addition, the authors emphasize

the fact that the boundary element method is useful for anafysis of a

complex structure in the field of magoetostatic wave (MSW) devices.

I. INTRODUCTION

In a previous paper [1], the authors have already shown that

the boundary element method (BEM) [2] is very effective and

useful for the analysis of magnetostatic wave (MSW) problems.

In the present paper, a ridged-type waveguide will be treated.

Tanaka and Shimizu [3] obtained the dispersion relation for the

same type of waveguide as discussed here, but the bias magnetic

field was appllied in the plane of the yttrium-iron-garnet (YIG)

film and, therefore, the mode properties obtained there are quite

different from those revealed here. Moreover, they used the

equivalent-circuit method to get the results and, hence, did not

show any potential profile.

For the purpose of application of MSW to microwave in-

tegrated circuits, it is desirable that a. bias magnetic field be

applied in the normal direction to the YIG film grown on the
gadlinium-gallium-garnet (GGG) substrate. As is well known,

however, only a magnetostatic volume wave (MSVW) can propa-

gate in an infinite and homogeneous YIG film.

Now, notice that the ridged structure has a side parallel or

tilted to the bias field, and we might expect that the side or the

wall of the ridge can support a kind of magnetostatic surface

wave (MSSW). We may suggest that this type of guided wave

stems from almost the same idea as guided MSWS in the plate of

YIG magnetized nonuniformly [4]–[6]. Thus, it is very interesting

to investigate the characteristics of the wave propagation along

the ridged structure, and, besides, the authors would like to

emphasize the fact that the BEM is very suitable for the analysis

of a complex structure like this one.

II. BEM FORMULATION

The BEM approach for MSW propagation problems is de-

scribed briefly below. A waveguide to be considered is shown in

Fig. 1. A cross section of a waveguide may be arbitrary, but an

internaf dc magnetic field is supposed to be uniform for the sake

of mathematical simplicity. Under a quasistatic approximation,
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REGION U (AIR)

Fig, 1. Cross section of a waveguide for the magnetostatic wave. H, is a bias

magnetic field.

the Maxwell’s equations yield to v X h = O and v. b = O. Hence,

the MSW’S are described by the potentiaf $, from which h = v+.

The basic equations are given as

a2~ iYc#l
P— +Z–pp%.o for YIG region

8X2
(1)

az+ a*@
—+ Z–P*4J=0 for air region
8X2

(2)

with a variation factor exp [ j ( cot– /ly)]understood, where p is a

diagonal component of the tensor permeability of YIG.

Applying the BEM to each of (1) and (2), we obtain the

following matrix equations [1]:

HI+ I = GIqI (3)

HIII$I1 = GIIqII (4)

where @~,II and ql, ~1 vectors are the values of the magnetic

potentials and the normaf components of the magnetic flux

density at the boundary nodes, respectively, and the elements of

the matrices HI, ~1 and GI, II are calculated by using a fundamen-

tal solution with materiaf constants of the medium in each region

as follows [1]:

(5)

(6)

(7)

(8)

c,=l-&{ taf-’(fitand2)-ta-’( fitanf?l)} (9)

where (x, z) and (x,, z,) are coordinates of the source and

observation point, respectively, 8,, is the Kronecker delta, K. is

the modified Bessel function of zero order, IC is an off-diagonal

component of tensor permeability, nx and n, are x and z

components of the normal unit vector, and @l and 02 are the

angles between the x-axis and the tangent to the boundary. +1

and *Z are the interpolation functions defined by

+,= (1- $)/2

+2= (l+&) /’L

for the integraf along the boundary

include the observation point, and

+1=1-6

–l~f~l (lo)

element r,, which does not

(11)

for the integraf along ~., which includes the observation point.

The integrals given in (5) and (6) are evaluated by the Gaussian

quadrature numerical integration method.

Fig. 2. Cross section of ridged-type waveguide

The boundary conditions require the continuity of the tangen-

tial magnetic field and the normal flux density across a boundary

contour. The tangential magnetic field is decomposed into the

longitudinal component hy and the transverse component h ~.

Since the magnetic field can be computed from the gradient of

the potential, h,, is equal to – j~$. h, is also continuous across

the contour if o just inside the contour has the same variation

along the contour as @ does just outside. Hence, (3) and (4) are

combined with each other through boundary conditions, i.e.,

% = %1 and qI = – 911, where the minus sign before qII indicates
that the unit vector normal to the air region points to the

opposite direction of the normal unit vector to the YIG region.

Then, the following linear homogeneous system is obtained:

(12)

The determinant of the coefficient matrix in the above equation

must be zero in order that a nontrivial solution exists, therefore

HI – G1

H1l G1l
=0 (13)

Successive values of the parameter ~ are tried until (13) is

satisfied within some predetermined accuracy. It is easy to extend

the BEM to analyze similar problems in which we consider more

than two media.

III. DISPERSION RELATION AND POTENTIAL

DISTRIBUTION

Consider a topographical structure, as illustrated in Fig. 2, as a

practical MSW waveguide. A de-bias magnetic field is applied

along the z-axis, and we shall confine our discussions within the

frequency range of the MSSW. In order to obtain a dispersion

relation and a potentiaf distribution, the computations were

carried out by setting 77 nodes on the boundary for the BEM

procedure. The other numerical values used there are given as

follows:

bias field Hi = 500 Oe,

saturation magnetization 4 rMS = 1760 G,

gyromagnetic ratio y = 2.8 MHz/Oe,

width of th’e ridge w = 100 pm,

thickness of the ridge d = 20 pm,

ratio of height to thickness (a/d) = 1.0,0.9,0.7,0.5.

Concerning the length of skirt b, itwas taken so long as the

potential was considered to decay out at the edge of YIG away

from the ridge.

Fig. 3 shows the dispersion relation. We can see the curves

become closer to those in the case of a/d= 1, which means the

structure is reduced to a simple slab, as the parameter a/d

approaches to unity. From another point of view, we can say that

a wavenumber increases as a/d decreases. In the region of a

smaller wavenumber, the side or wall of the ridge likely plays a

less effective role; thus, it seems that the dispersion curves get

nearer at the lower limit of the MSSW spectrum. The magneto-
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Fig 3 Dispersion of the magnetostatic wave propagating in the topography
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Fig. 5. Magnetic potentiaJ versus distance along the x-axis. Ratio a/d is

equal to 0.7.

static wave may be expected to have a sinusoidal variation along

the x-axis below the surface-wave range, as is known in a width

mode [7]. Unfortunately, the BEM cannot be applied directly to

analysis in the volume-wave range.

In order to realize the mode characteristic, let’s see the poten-

tial profile. Several patterns are shown in Figs. 4–7. All potential

profiles are obtained along the dotted lines in these figures,

keeping the frequency at 3.5 GHz. As is seen from these curves,

the most important and characteristic feature is that the mode

obtained here is nonreciprocal and a kind of so-called edge-guided

mode along the wall of the ridge. The energy concentration at the

‘ma-’=2.15 ----------------- ‘-----—---—----

z
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d = 20 (pm)

Nodes . 77

I 1.0t I ●le .0.5

-_j-d__L75(p
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!

a

Fig. 6. Magnetic potential versus distance along the x-axis. Ratio a/d M

equal to 0.5.
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Fig. 7 Magnef.ic potentml versus distaace along the z-axis: ----- a/d= 0.9,

—a/d=0.7, -.-. -u/d=O5.

edge is conspicuous, and, for instance, the potential decays below

10 percent of its peak somewhere away from the edge by only 0.2

wavelengths. Also, it is noteworthy that the energy concentration

increases remarkably as the ratio a/d decreases. To sum up, the

mode has a strong nonreciprocity and well-guided property. Fig.

7 shows how the potentiaf varies along the z-axis, that is, in the

direction of the depth of the ridge. We see that each peak

corresponding to the respective a/d ratio is reasonably located

at around the center of the wall.

IV, CONCLUSIONS

In ‘ the present paper, the authors proposed a ridged-type

waveguide for MSW’S which was supposed to be practical from

the following standpoints. Firstly, a bias magnetic field is applied

in the direction normal to the surface of the substrate. Secondly,

it is not difficult to fabricate the geometry by chemical etching.

The BEM was used for computations of the dispersion rela-

tions and the potential distributions. In conclusion, there exists a

nonreciprocal mode which propagates along either one side of the

ridge or another, depending upon the direction of the bias field

and the direction of wave propagation. For instance, we have an

edge-guided mode with wavelength =19 pm, phase velocity = 6.7
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x 104 m/s, and group velocity= 8.4X 103 m/sat frequency= 3.5

GHz for the case of d= 20 pm, a =10 pm, and w =100 pm.

The potential in this case decays below 10 percent of its peak

when it is away from the wall by 0.2 wavelength. This represents

the extent of the energy concentration and at the same time the

extent of nonreciprocity of the waveguide. The knowledge about

the mode treated here immediately gives us an idea that the

proposed structure is effectively available for isolators, circula-

tors, and so forth in a way similar to the edge-guided mode in a

ferrite loaded stripline [8].

As mentioned in Section I, the authors would like to have

made clear not only that the proposed waveguide is promising in

the field of MSW devices, but also that the BEM is useful for the

analysis of structures for which analytical solutions are not

obtained simply or easily. It maybe worthwhile to point out that

the computer program developed by the authors makes complex

computations possible in such cases as a disc and periodically

corrugated waveguides.
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A New Recurrence Method for Determining the

Green’s Function of Planar Structures with Arbitrary

Anisotropic Layers

RICARDO MARQUES, MANUEL HORNO, MEMBERIEEE,AND

FRANCISCO MEDINA

zffmtract —A method to determine the Green’s functions in the spectral

domain is developed. It is suitable for solving the matrix Green’s function

numerically for an arbitrary anisotropic N-1ayered dielectric structure. The

method is suitable for computation of the characteristic parameters of MIC
lines having anisotropic multilayered substrates or superstrates. As an

application, the phase velocities of single and coupled microstips, with a

constant gradient of anisotropy along the normal to the interfaces, have

been calculated.
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1. INTRODUCTION

During the last severaf years, the conventional planar struc-

tures embedded in anisotropic dielectrics-single [1]–[4], coupled

[5]-[8], covered [9]-[11], shielded tnicrostripline [12], [13], slotline

[14], and coplanar waveguide [15] —have been analyzed exten-

sively.

The most commonly used anisotropic substrates, such as sap-

phire and boron–nitride, or some glass- and ceramic-filled poly-

meric materials, e.g. Duroid and Epsilam, have well-known ad-

vantages over the isotropic substrates used largely in microwave

integrated circuits. The introduction of anisotropic substrates

having tilted principal axes has recently made it possible to

manipulate some characteristic parameters of the structure in a

range depending on the substrate anisotropy. For instance, it has

been shown that the phase velocities can be equalized by varying

the tilting angle in the coupled microstriplines [7].

The propagation characteristics study of such structures has

been made using various procedures. Nevertheless, the methods

utilizing the Green’s potentiaf function are used extensively. For

instance, if the Green’s function in the Fourier domain is known,

the unknown quantity becomes the charge density and the prob-

lem of estimating the characteristic parameters is easily solved by

using the moment approach [5] or variational techniques [4].

The Green’s function is generally calculated for each structure.

In this paper, a recurrence algorithm is presented to evaluate the

transform of the Green’s function for planar open structures

having multilayered substrates or superstrates with arbitrary ani-

sotropy. The method is useful, for instance, in calculating the

capacitance of planar structures with single or coupled strips in

one or more interfaces embedded in multilayered anisotropic

dielectrics, including an arbitrary gradient of anisotropy in the

normaf direction to the interfaces, requiring very little modifica-

tions in the programs already existing.

II. RECURRENCE FORMULAS FOR THE POTENTIAL AND

FIELDS IN AN ANISOTROPIC LAYER

Let us first consider a layer of perfect and homogeneous

dielectric of finite thickness h. The permittivity tensor at the

x – y plane is given by

(1)

Then the bidimensional equation for the electrostatic potential

in the Fourier domain has the form

(2)

The general solution of this differential equation is

?(P,.v) = e-’6RY(A sinh((3Sy)+ Bcosh(/3Sy)) (3)

where

‘={wrrz
(4)

(5)

3( ~, y) is the potential Fourier transform y-coordinate and A

and B are arbitrary coefficients which must be determined from

the boundary conditions.
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