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IIL.

We have presented the characteristic impedance of the slab line
with an anisotropic dielectric. The characteristic impedance has
been obtained analytically by using transform methods. A sim-
pler approximate formula which is useful for application has also
been presented.
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Edge-Guided Magnetostatic Mode in a
Ridged-Type Waveguide

MORIYASU MIYAZAKI, KEN'ICHIRO YASHIRO, MEMBER, 1EEE,
AND SUMIO OHKAWA, SENIOR MEMBER, IEEE

Abstract — A ridged-type magnetostatic waveguide is analyzed using the
boundary element method. A bias magnetic field is applied perpendicularly
to the surface of an yttrium-iron-garnet (YIG) film grown on a gadlinium-
gallium-garnet (GGG) substrate. The dispersion curves and the potential
profiles obtained in this paper show that the mode has a strong nonrecipro-
cal property and is a kind of edge-guided mode which propagates along
either side of the ridge, depending upon the direction of the bias field and
the direction of the wave propagation. In addition, the authors emphasize
the fact that the boundary element method is useful for analysis of a
complex structure in the field of magnetostatic wave (MSW) devices.

I. INTRODUCTION

In a previous paper [1], the authors have alrcady shown that
the boundary element method (BEM) [2] is very effective and
useful for the analysis of magnetostatic wave (MSW) problems.
In the present paper, a ridged-type waveguide will be treated.
Tanaka and Shimizu [3] obtained the dispersion relation for the
same type of waveguide as discussed here, but the bias magnetic
field was applied in the plane of the yttrium-iron-garnet (YIG)
film and, therefore, the mode properties obtained there are quite
different from those revealed here. Moreover, they used the
equivalent-circuit method to get the results and, hence, did not
show any potential profile. ~

For the purpose of application of MSW to microwave in-
tegrated circuits, it is desirable that a.bias magnetic field be
applied in the normal direction to the YIG film grown on the
gadlinium-gallium-garnet (GGG) substrate. As is well known,
however, only a magnetostatic volume wave (MSVW) can propa-
gate in an infinite and homogenous YIG film.

Now, notice that the ridged structure has a side parallel or
tilted to the bias field, and we might expect that the side or the
wall of the ridge can support a kind of magnetostatic surface
wave (MSSW). We may suggest that this type of guided wave
stems from almost the same idea as guided MSW’s in the plate of
YIG magnetized nonuniformly [4]-{6]. Thus, it is very interesting
to investigate the characteristics of the wave propagation along
the ridged structure, and, besides, the authors would like to
emphasize the fact that the BEM is very suitable for the analysis
of a complex structure like this one.

II. BEM FORMULATION

The BEM approach for MSW propagation problems is de-
scribed briefly below. A waveguide to be considered is shown in
Fig. 1. A cross section of a waveguide may be arbitrary, but an
internal dc magnetic field is supposed to be uniform for the sake
of mathematical simplicity. Under a quasistatic approximation,
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REGION I (AIR)

Fig. 1. Cross section of a waveguide for the magnetostatic wave. H, is a bias

magnetic field.

the Maxwell’s equations yield to v X h =0 and v -5 = 0. Hence,
the MSW’s are described by the potential ¢, from which A =v¢.
The basic equations are given as

2 2
g_% + g : 1B’ =0 for YIG region (1)
X
2 2
g d; Z = —B’=0 forair region (2)
X

with a variation factor exp[ j(w¢ — By)] understood, where p is a
diagonal component of the tensor permeability of YIG.

Applying the BEM to each of (1) and (2), we obtain the
following matrix equations [1]:

Hio1 =Gy (3)
Hydy=Gnqy (4

where ¢, and g vectors are the values of the magnetic
potentials and the normal components of the magnetic flux
density at the boundary nodes, respectively, and the elements of
the matrices Hyy; and G, are calculated by using a fundamen-
tal solution with material constants of the medium in each region
as follows [1]:

h = Tdl+ FdTl +¢6; 5
ij /;‘j71¢2q1 ‘/;jlplq: ivif ( )

2=/, przqs: T+ [ 97 dT (6)

¢ = 2[ Ko BY(x=x) +u(z—2)" O
T AL ARS8 ®)
6 =1~ 5 {1an (i tanfy) ~tan = (K tandy)}  (9)

where (x,z) and (x;,z;) are coordinates of the source and
observation point, respectively, §,, is the Kronecker delta, K, is
the modified Bessel function of zero order, k is an off-diagonal
component of tensor permeability, n, and #n, are x and z
components of the normal unit vector, and #, and §, are the
angles between the x-axis and the tangent to the boundary. ¥,
and ¥, are the interpolation functions defined by

=(1-¢)/2

=(1+£)/27 _1§€§1

(10)

for the integrél along the boundary element T, which does not
include the observation point, and

Yr=1-¢
¥y =§, (11)

for the integral along I}, which includes the observation point.
The integrals given in (5) and (6) are evaluated by the Gaussian
quadrature numerical integration method.

0gé<1
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Fig. 2. Cross section of ridged-type waveguide.

The boundary conditions require the continuity of the tangen-
tial magnetic field and the normal flux density across a boundary
contour. The tangential magnetic field is decomposed into the
longitudinal component %, and the transverse component #,.
Since the magnetic field can be computed from the gradient of
the potential, 4, is equal to — jB¢. h, is also continuous across
the contour if ¢ just inside the contour has the same variation
along the contour as ¢ does just outside. Hence, (3) and (4) are
combined with each other through boundary conditions, i.e.,
&) = &y and g, = — gy, where the minus sign before g indicates
that the unit vector normal to the air region points to the
opposite direction of the normal unit vector to the YIG region.
Then, the following linear homogeneous system is obtained:
(Hx —Gj(%)=0

Hy Gu )\ 4
The determinant of the coefficient matrix in the above equation
must be zero in order that a nontrivial solution exists, therefore

(12)

(13)

Successive values of the parameter B8 are tried until (13) is
satisfied within some predetermined accuracy. It is easy to extend
the BEM to analyze similar problems in which we consider more
than two media.

III. DISPERSION RELATION AND POTENTIAL

DISTRIBUTION

Consider a topographical structure, as illustrated in Fig. 2, as a
practical MSW waveguide. A dc-bias magnetic field is applied
along the z-axis, and we shall confine our discussions within the
frequency range of the MSSW. In order to obtain a dispersion
relation and a potential distribution, the computations were
carried out by setting 77 nodes on the boundary for the BEM
procedure. The other numerical values used there are given as
follows:

bias field H, = 500 Oe,

saturation magnetization 47 M, =1760 G,
gyromagnetic ratio y = 2.8 MHz /Oe,

width of the ridge w =100 wm,

thickness of the ridge d = 20 pm,

ratio of height to thickness (a/d)=1.0,0.9,0.7,0.5.

Concerning the length of skirt b, it was taken so long as the
potential was considered to decay out at the edge of YIG away
from the ridge.

Fig. 3 shows the dispersion relation. We can see the curves
become closer to those in the case of a/d =1, which means the
structure is reduced to a simple slab, as the parameter a/d
approaches to unity. From another point of view, we can say that
a wavenumber increases as «/d decreases. In the region of a
smaller wavenumber, the side or wall of the ridge likely plays a
less effective role; thus, it seems that the dispersion curves get
nearer at the lower limit of the MSSW spectrum. The magneto-
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Fig. 5. Magnetic potential versus distance along the x-axis. Ratio a/d is
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static wave may be expected to have a sinusoidal variation along
the x-axis below the surface-wave range, as is known in a width
mode [7]. Unfortunately, the BEM cannot be applied directly to
analysis in the volume-wave range.
In order to realize the mode characteristic, let’s see the poten-
tial profile. Several patterns are shown in Figs. 4-7. All potential
_ profiles are obtained along the dotted lines in these figures,
keeping the frequency at 3.5 GHz. As is seen from these curves,
the most important and characteristic feature is that the mode
obtained here is nonreciprocal and a kind of so-called edge-guided
mode along the wall of the ridge. The energy concentration at the
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edge is conspicuous, and, for instance, the potential decays below
10 percent of its peak somewhere away from the edge by only 0.2
wavelengths. Also, it is noteworthy that the energy concentration
increases remarkably as the ratio a /d decreases. To sum up, the
mode has a strong nonreciprocity and well-guided property. Fig.
7 shows how the potential varies along the z-axis, that is, in the
direction of the depth of the ridge. We see that each peak
corresponding to the respective a /d ratio is reasonably located
at around the center of the wall.

IV. CONCLUSIONS

In’the present paper, the authors proposed a ridged-type
waveguide for MSW’s which was supposed to be practical from
the following standpoints. Firstly, a bias magnetic field is applied
in the direction normal to the surface of the substrate. Secondly,
it is not difficult to fabricate the geometry by chemical etching.

The BEM was used for computations of the dispersion rela-
tions and the potential distributions. In conclusion, there exists a
nonreciprocal mode which propagates along either one side of the
ridge or another, depending upon the direction of the bias field
and the direction of wave propagation. For instance, we have an
edge-guided mode with wavelength =19 pm, phase velocity = 6.7
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% 10* m /s, and group velocity = 8.4 X10° m/s at frequency = 3.5
GHz for the case of d=20 pm, ¢=10 pm, and w=100 pm.
The potential in this case decays below 10 percent of its peak
when it is away from the wall by 0.2 wavelength. This represents
the extent of the energy concentration and at the same time the
extent of nonreciprocity of the waveguide. The knowledge about
the mode treated here immediately gives us an idea that the
proposed structure is effectively available for isolators, circula-
tors, and so forth in a way similar to the edge-guided mode in a
ferrite loaded stripline [8].

As mentioned in Section I, the authors would like to have
made clear not only that the proposed waveguide is promising in
the field of MSW devices, but also that the BEM is useful for the
analysis of structures for which analytical solutions are not
obtained simply or easily. It may be worthwhile to point out that
the computer program developed by the authors makes complex
computations possible in such cases as a disc and periodically
corrugated waveguides.
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A New Recurrence Method for Determining the
Green’s Function of Planar Structures with Arbitrary
Anisotropic Layers

RICARDO MARQUES, MANUEL HORNO, MEMBER IEEE, AND
FRANCISCO MEDINA

Abstract — A method to determine the Green’s functions in the spectral
domain is developed. It is suitable for solving the matrix Green’s function
numerically for an arbitrary anisotropic N -layered dielectric structure. The
method is suitable for computation of the characteristic parameters of MIC
lines having anisotropic multilayered substrates or superstrates. As an
application, the phase velocities of single and coupled microstrips, with a
constant gradient of anisotropy along the normal to the interfaces, have
been calculated.
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1. INTRODUCTION

During the last several years, the conventional planar struc-
tures embedded in anisotropic dielectrics—single [1]-[4], coupled
[51-[8], covered [9]-[11], shielded microstripline {12], [13], slotline
[14], and coplanar waveguide [15]—have been analyzed exten-
sively.

The most commonly used anisotropic substrates, such as sap-
phire and boron-nitride, or some glass- and ceramic-filled poly-
meric materials, e.g. Duroid and Epsilam, have well-known ad-
vantages over the isotropic substrates used largely in microwave
integrated circuits. The introduction of anisotropic substrates
having tilted principal axes has recently made it possible to
manipulate some characteristic parameters of the structure in a
range depending on the substrate anisotropy. For instance, it has
been shown that the phase velocities can be equalized by varying
the tilting angle in the coupled microstriplines {7].

The propagation characteristics study of such structures has
been made using various procedures. Nevertheless, the methods
utilizing the Green’s potential function are used extensively. For
instance, if the Green’s function in the Fourier domain is known,
the unknown quantity becomes the charge density and the prob-
lem of estimating the characteristic parameters is easily solved by
using the moment approach [5] or variational techniques [4].

The Green’s function is generally calculated for each structure.
In this paper, a recurrence algorithm is presented to evaluate the
transform of the Green’s function for planar open structures
having multilayered substrates or superstrates with arbitrary ani-
sotropy. The method is useful, for instance, in calculating the
capacitance of planar structures with single or coupled strips in
one or more interfaces embedded in multilayered anisotropic
dielectrics, including an arbitrary gradient of anisotropy in the
normal direction to the interfaces, requiring very little modifica-
tions in the programs already existing.

II. RECURRENCE FORMULAS FOR THE POTENTIAL AND
FIELDS IN AN ANISOTROPIC LAYER

Let us first consider a layer of perfect and homogeneous
dielectric of finite thickness h. The permittivity tensor at the
x—y plane is given by

6y
Then the bidimensional equation for the electrostatic potential
in the Fourier domain has the form
» 0%
ay?
The general solution of this differential equation is
$(B,y) = e ™% (Asinh(BSy)+ Bcosh(BSy))

€ +2j612B% —~ 8% = 0. (2)

()

where
R=— (4)
iy €2 2
(B, y) is the potential Fourier transform y-coordinate and A4

and B are arbitrary coefficients which must be determined from
the boundary conditions.

1/2
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